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Introduction
After the emergence of the idea of Keldysh [1] on the 

establishment of an additional crystal periodic potential and 
its realization in layered semiconductor structures [2,3] have 
passed  fty years. However, interest in this system, called 
the superlattices (SL), continues unabated. The number 
of articles, reviews and monographs on semiconductor 
superlattice is steadily increasing [4-15]. The suggested by 
Keldysh perspective to control band spectrum of a solid 
proved tempting. The technical applications of SL is very 
broad . In recent years the physics of solid state enriched 
set of effects and technical applications due to study of  SL. 

In Refs. [5,6] the de Haas-van Alphen effect in layered 
conductors with additional periodic potential which 
perpendicular to the layers changes. 

In Ref. [11] the electromagnetic waves in the SL in 
a magnetic  eld were considered. The spectrum of low-

frequency oscillations of the  eld in conditions of the 
quantum Hall effect was obtained. This effect is observed 
experimentally in SL GaAs / (AlGa) in magnetic  eld which 
perpendicular to the axis of the superlattice. The undamped 
helicons in SL were predicted. They do not damped because 
the dissipative components of the conductivity tensor under 
certain values of the magnetic  eld strength equals zero. 
Besides, under the frequencies of  elds which less than the 
electron cyclotron frequency, there is no Landau damping. 
Thanks to the non-dissipative motion of electrons in the SL 
the spectrum and polarization of electromagnetic waves in 
it are of an unusual character. 

In Ref. [12] it is shown that in the SL in a magnetic 
 eld it is possible metal-insulator transition due to the 

dependence of the density of states of electrons on the 
magnetic  eld. This article calculates the magnetic 
 eld values at which the dissipative components of 
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the conductivity tensor of the electron gas vanish. The 
dependence of the photoconductivity of SL on the magnetic 
 eld was considered. In Ref. [13] the thermodynamic 

functions of the SL in the magnetic  eld for the degenerate 
and nondegenerate electron gas were calculated. A new 
method of adiabatic cooling of the sample was suggested. 

In Refs. [2-15] the one-dimensional superlattice with 
additional periodic potential depending on one coordinate 
were considered. The new surge of interest in CP associated 
with the discovery of carbon [16] and semiconductor [17] 
nanotubes. There was a need to consider the SL on the 
surface of the tube. The SL with cylindrical symmetry may 
be radial and longitudinal. The radial SL is a set of coaxial 
cylinders. The longitudinal SL is similar to the system of 
coaxial rings strung on the axis of the cylinder. Such SL 
can exist on a tube  lled with fullerenes or metal atoms 
[18-20]. 

Landau damping of plasma waves in the degenerate 
and nondegenerate electron gas on the surface of the 
nanotubes in a longitudinal magnetic  eld in the absence of 
the superlattice is considered in the paper [21]. The authors 
of this paper calculated the longitudinal dielectric function 
of the electron gas on the tube. Restricting ourselves 
investigation taken into account only the intraband 
transitions of electrons, they found the Aharonov-Bohm 
oscillations of the dielectric constant. 

In Refs. [22,23] the long-wave plasma oscillations 
on the tube with a superlattice were considered. In these 
articles, the transparency windows for plasma waves is 
considered only for certain values of the wave vector and 
the frequency of the waves. Here, within the established in 
the article [22] model, we present the results of calculating 
the position and shape of the region of Landau damping 
plasma waves in the whole plane wavenumber-frequency. 

The polarization operator of the electron gas
The energy of the electron with the effective mass m   

on the surface of a cylindrical nanotube in a magnetic  eld 
parallel to its axis, is calculated by Kulik taking into 
account the quantization of radial motion of electrons in a 
tube of small thickness [24]: 

2 2
2

0( )
2lk

kl
m

,                   (1) 

where l  and k  – the projection of the angular 

momentum and momentum of electron on the  tube axis, 
2

0 2
*2m a

  – rotational quantum, a  – the radius of 

the tube, 
0

 – the ratio of the magnetic  ux  

through the cross section of the tube to the  ux quantum 

0
2 c

e  [24]. The equation (1) describes a set of 

one-dimensional adjoining subbands whose boundaries 
2

0 ( )l l  coincide with the quantized energy 

levels of the circular motion of the electrons on the tube in 
the magnetic  eld. The electron density of states has a root 
singularity at the boundary of the subzone. The simplest 
way to take into account the superlattice on the tube is to 
replace the energy of the longitudinal motion of the electron 
in the formula (1) to the expression 

(1 cos )k kd .                            (2) 
This expression is borrowed from the theory of the 

strong coupling of electrons with the lattice, and is often 
used in the theory of superlattices and layered crystals 
[15,25,26]. As a result of such a substitution the electron 
spectrum on the tube becomes 

 2
0 ( ) (1 cos )lk l kd ,               (3) 

where d  – period of superlattices, 2  – band width in the 
energy spectrum of the longitudinal motion of the electron. 
This band corresponds to the values of the wave number k  

in the  rst Brillouin zone  kd d  . The spectrum 

(3) describes the set of allowed energy region of electron 
inside the intervals 2l , separated by gaps. By 

analogy with traditional superlattice these bands are called 
minibands. The electron density of states has a root 
singularity at the miniband boundaries [27]. 

   In the random phase approximation the damping 
decrement of plasma waves with angular momentum m  
and the wave number q   on the tube is equal to [22] 

Im ,

Re ,
m

m
m q

m

P q
q

P q
,          (4) 

where ,mP q   – the polarization operator of electron 

gas, m q  – plasmon spectrum. The polarization 

operator is equals 

1,
i0

lkl m k q
m

lkl m k qlk

f f
P q

aL
,(5) 

where f  – Fermi function, L  – the length of the tube. 

The dispersion equation for the spectrum and damping 
of plasma waves has the form 
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  1 , 0m mq P q ,                   (6) 

where 
24 I Km m mq e a qa qa          (7) 

– cylindrical harmonic of electron Coulomb potential on 
the tube, Im   and Km  – modi  ed Bessel functions, e  – 
the electron charge. 

If the electron gas is degenerate, the integration with 
respect k  in the formula (5) is limited to an interval 

,l lk k , where 

01 arccos   l
lk

d
                        (8) 

– the maximum wave number of electrons in a partially 
 lled miniband with the number l , 0  – the Fermi energy. 

The resulting integration over the k  the l -miniband 
contribution to the real part of the polarization operator is 
de  ned by parameters 

2 sin
2

c qd .                          (9) 

Here 
 0, 2l m m l m ,    (10) 

 – the frequency of direct transitions of electrons 

l l m   between the miniband of the spectrum (3). 

If 2 1c , from the formula (5) we obtain 
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where l lx k d . When the electrons are completely  lled 

the l -miniband, in the formula (11) lx .

In case of  2 1c  we  nd 
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           (12) 

If we restrict our consideration only the intraband 
transitions ( 0m , 0 , 

2 sin
2

c c c qd  ), the formulas (11) and 

(12) is simpli  ed. 
Transition in the formulas (11) and (12) towards to 

the nanotube without superlattice is performed according 
to the rule 

0d ,  
22, d m  .               (13) 

In this case, the spectrum (3) becomes (1) and formula 
(11) takes the form 
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,              (14) 

where 
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0
2

l lm

-maximal velocity of the electrons in the l -th subzone 

without superlattice, 
2

2q
q

m . 

In the absence of interband transitions ( 0m ) from 

the formula (5) we obtain the contribution of the l

-miniband into the imaginary part of the polarization 
operator: 

0
2

1Im ,
4 sin 1

2

lP q
qdad c

, 

 (15) 
where 

2 , 0 2 sin sin
2 2l l

qd qdq k x .

If q k , the function 0Im lP   is still equal to (15), 

however  , where 

2 sin sin
2 2l

qd qdx .         (16) 

Fig. 1 shows graphs of functions (15) in these cases. 

The values of the jump in the points  are 

1

4 sin cos
2 2l

qd qdad x
.

Taking into account the interband transitions 
( 0m ) instead of formula (15) in the vicinity of the 

frequencies  we get 

2

1Im ,
4 sin 1

2

lmP q
qdad c

, (17) 

as in the formulas (16) terms  appear.

In the absence of spatial dispersion from the formula 
(5) at any temperature we obtain 

Im m l
l

P n , (18) 

where ln  – the surface density of electrons in the l -th 

miniband. In this case, the imaginary part of the polarization 
operator has sharp jump at frequencies of direct electron 
transitions between minibands.

Transparency windows
From formula (4) it is seen that for a obtaining of 

transparency windows for plasma waves in a degenerate 
electron gas on the surface of the nanotubes it is suf  cient 
to consider the regions on a plane q , in which 
Im 0P . The same regions can be found from the laws 
of conservation of angular momentum projection and 
electron momentum projection on the axis of the tube, and 
from the law of conservation of energy under the electron-
plasmon absorption. These conservation laws are: 

0lk l m k q .                 (19) 

From formula (5) we have seen that the left-hand side 
of equation (19) is the argument of the delta function, 
including into the imaginary part of the polarization 
operator. In addition, when an quantum electron transfer 

, ,l k l m k q  is occurs, involving the 

absorption of a plasmon, the Pauli principle must be 
performed: 0lk l m k q . Consequently, after 

the substitution lk k  in the equation (19), we obtain 

the boundaries of collisionless damping of plasma waves 
on the tube with a superlattice in a magnetic  eld: 

2 sin sin
2 2l

qd qdq x .  (20) 

These equations contains the value l lx k d  which 

determines the position of the Fermi level 0  in the l -th 
miniband. From the formula (8) it follows that under 

0lx  Fermi energy is located at the “bottom” of the 

Fig. 1. The dependence of the imaginary part of 
polarization operator (15) as the functions of  the 
frequency at 2 lq k  (a), 2 lq k  (b). 
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miniband ( 0 l ). With the growth of the lx  Fermi 

energy and the electron density increases. When 2lx   

the level 0  is located in the center of the miniband (

0 l ) and reaches her “ceiling” on the boundary 

of the Brillouin zone ( 0, 2l lx ). Thus, 

when 0 2lx   the Fermi level is located in the lower 

half of the miniband, while 2 lx  – at the top. 

When 0q , the difference   in the 

vicinity of each frequency   decreases, the Landau 
damping region is narrowed in accordance with the 
behavior of the polarization operator (18) in the absence of 
spatial dispersion. This narrowing is occurs at the boundary 
of the Brillouin zone where the second term on the right-
hand side of (20) is equal to 

2 cos lx .                  (21) 

The shape and dimensions of the regions of Landau 
damping in the vicinity of the frequencies  are 
determined by the position of the Fermi level in the 

miniband. When 0   increases from the “bottom” of the l
-th miniband to its “ceiling” the expression (21) in the 

vicinity of the frequencies  decreases from  2   to  

2  .

Figure 2 schematically shows Landau damping region 
between the curves (20) for various locations of the Fermi 
energy in the miniband in the vicinity of the frequency 

. Outside these regions until the curves 

min max2 sin , 2 sin
2 2

qd qd
  (22) 

located transparency window for plasma waves. The curves 
of (22) – solution of the equation 1c . When 

2 , the graph of the curve min q  (22) 

intersects the axis q   at the point 

0
2 arcsin

2
q

d
. 

This point tends to the boundary of the Brillouin zone, 
when 2 .  If    greater  than the width of 

the miniband 2 , there is no intersection, i.e. 0q  

located in the Brillouin zone. 
The areas of Landau damping in the vicinity of the 

frequency  are similar to those  shown in Fig. 2. Note, 

that when 1 2   the boundaries of the miniband are 

satisfy of inequalities 1 0 2 ...   In this case, 

the frequency of the direct transition of electrons 1 2   

with 1m  is equal 0 3 2
 .  In the 

vicinity of this frequency there exists a branch of the 
plasmon spectrum with negative helicity. 

In the absence of interband transitions ( 0 ) 

Landau damping regions are bounded by the curve (20) and 
the axis q . 

In formulas (20) perform the limit (13) towards to the 
nanotube without superlattice. We take into account (8) and 

 
1

2
0 0

1sin 2l l lx .

Since 1qd , from the formulas (20), taking into 

account the terms of the order 2q  we  nd 

1 2 22
0 0 0

1 12
2l l lqd q d .

Passing here to the limit (13), we obtain a parabola 

l qq ,

appearing in the formula (14). The maximum speed of the 
electrons l   in the  l -th miniband plays the role of the 

Fermi velocity F  of electrons in three-dimensional and 
two-dimensional electron gas. 

   The condition of resonant absorption of plasma 
waves on the tube with a superlattice when 0m  has the 
form 

2 sin sin
2 2l

qd qk d .            (23) 

In the extreme case 1, , 1l lqd q k k d , it 

Fig. 2. Areas of Landau damping between the curves 
(20) at cos 0lx   (a), cos 0lx   (b) and   

cos 0lx  (c).
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takes the usual form in the theory of waves: lq  – 

the phase velocity of the wave, propagating along the tube 
is equal to the longitudinal velocity of the electrons.

Conclusions
Study of propagation of plasma waves along the tube 

are very topical problem because it allows to determine 
the waveguide characteristics of the tube. In addition, 
it is possible to obtain additional information about the 
dynamic characteristics of the conduction electrons on the 
curved surface. The presence of an additional parameter 
– the curvature of the structure – enriches the picture of 
wave phenomena, increasing the number of ways to control 
the properties of the system. In particular, the rotational 
quantum contains the characteristic of circular motion of 
electrons on the tube – transverse effective mass. It may 
differ from the longitudinal mass. Superlattice adds new 
features to the picture of wave propagation. It is associated 
with additional parameters – the period and amplitude of 
the modulating potential. Characteristics of the tube – form 
and sizes of windows transparency of waves and their  
spectrum and damping – are sensitive to these parameters. 
This allows their to determine, by analyzing the properties 
of waves. 

The paper used a simple model spectrum of electrons, 
simulating the superlattice on the tube. This allowed within 
the model adopted in the random phase approximation to 
obtain an exact expression for the polarization operator of 
the electron gas. As a result, the shape and size of windows 
transparency for plasma waves were determined in the 
entire Brillouin zone.   They were obtained by analysis of 
the imaginary part of the polarization operator and with the 
help of conservation laws. The results can be used in the 
study of plasma waves in semiconductor superlattices on a 
base of 1Al Ga As Ga Asx x , InGa As Ga As , 

In As Ga As , GeSi / Si  and in carbon nanotubes in a 

metal conduction mode.
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