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Within the framework of the model electron energy spectrum on the nanotube surface with a superlattice in a magnetic field,
an exact expression for the polarization operator of a degenerate electron gas was obtained. The shape and size of the plasma waves
Landau damping regions on the tube throughout the Brillouin zone were calculated. The influence on these areas of the position of
Fermi level in the miniband was considered. The conditions for the resonance absorption of plasmon on the tube by electrons were
found. The limiting transition towards the nanotube without superlattice was performed.
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Ha ocHOBe MOIENbHOTO CIIEKTPa YHEPrHU JIEKTPOHOB Ha MMOBEPXHOCTH HAHOTPYOKH CO CBEPXPELICTKOH B MarHUTHOM MOJe
MOJTYYESHO TOYHOE BBIPAKSHHUE ISl MTOJSIPU3ALIMOHHOTO OIIepaTopa BEIPOXKICHHOTO MIEKTPOHHOTrO ra3a. Paccunraubl popma u pazmepbl
obnacteii 3aryxanusi JlaHnay TU1a3MEHHBIX BOJH Ha TpyOke BO Bcell 30He Bpmintrosna. PaccMoTpeHo BiusiHHE Ha 3TH 00JacTH
nojoxeHuss ypoBHs depmu B MuHU30He. HalifieHbl YCIIOBHS PE30HAHCHOTO MOIVIOIICHHS TUIA3MOHOB Ha TPYOKE SJICKTPOHAMH.
BeImonHeH npeesibHbIi mepexoa K HAaHOTPyOke 0e3 CBepXPEIICTKH.

KuaroueBble ciioBa: HaHOTPYOKa, CBEPXPEIIETKA, MATHUTHOE TI0JIe, ITa3MEHHbIe BOJIHBI, 3aryxanue JlaHaay.

Ha ocHOBI MO/IENIBHOTO CIIEKTPY SHEeprii eleKTPOHIB Ha MMOBEPXHI HAHOTPYOKM 3 HAJArpaTKoI0 Yy MAarHiTHOMY HOJIi OTPUMAaHO
TOYHHN BUPa3 JJIsl HOJISIPU3ALIHOTO OrepaTtopa BUPOPKEHOTO eJISKTPOHHOrO0 rasy. Po3paxoBani ¢opma i po3mipu obiacTeil 3racaHHs
Jlanmay mia3MoBHX XBWIIb Ha TPYOIl y Beiil 30HI bpuiuttoena. Po3missHyTO BIUTMB Ha I1i 00JIACTi MOJIOKEHHS piBHA DepMi y MiHI30HI.
3HaiijieHi yMOBH PE30HAHCHOTO MONIMHAHHS [UIa3MOHIB Ha TPyOLli elleKTpOHaMH. BHKOHaHM#T rpaHUYHHUI MIepexij 1o HaHOTpyOKu Oe3

HaArpaTrkuy.

Kurouosi ciioBa: HaHOTpYOKa, HaATpaTKa, MarHiTHE 1OJIe, TUIA3MOBI XBUII, 3racaHHs Jlanmay.

Introduction
After the emergence of the idea of Keldysh [1] on the
establishment of an additional crystal periodic potential and
itsrealization in layered semiconductor structures [2,3] have
passed fifty years. However, interest in this system, called
the superlattices (SL), continues unabated. The number
of articles, reviews and monographs on semiconductor
superlattice is steadily increasing [4-15]. The suggested by
Keldysh perspective to control band spectrum of a solid
proved tempting. The technical applications of SL is very
broad . In recent years the physics of solid state enriched
set of effects and technical applications due to study of SL.
In Refs. [5,6] the de Haas-van Alphen effect in layered
conductors with additional periodic potential which

perpendicular to the layers changes.
In Ref. [11] the electromagnetic waves in the SL in
a magnetic field were considered. The spectrum of low-
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frequency oscillations of the field in conditions of the
quantum Hall effect was obtained. This effect is observed
experimentally in SL GaAs/ (AlGa) in magnetic field which
perpendicular to the axis of the superlattice. The undamped
helicons in SL were predicted. They do not damped because
the dissipative components of the conductivity tensor under
certain values of the magnetic field strength equals zero.
Besides, under the frequencies of fields which less than the
electron cyclotron frequency, there is no Landau damping.
Thanks to the non-dissipative motion of electrons in the SL
the spectrum and polarization of electromagnetic waves in
it are of an unusual character.

In Ref. [12] it is shown that in the SL in a magnetic
field it is possible metal-insulator transition due to the
dependence of the density of states of electrons on the
magnetic field. This article calculates the magnetic
field values at which the dissipative components of
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the conductivity tensor of the electron gas vanish. The
dependence of the photoconductivity of SL on the magnetic
field was considered. In Ref. [13] the thermodynamic
functions of the SL in the magnetic field for the degenerate
and nondegenerate electron gas were calculated. A new
method of adiabatic cooling of the sample was suggested.

In Refs. [2-15] the one-dimensional superlattice with
additional periodic potential depending on one coordinate
were considered. The new surge of interest in CP associated
with the discovery of carbon [16] and semiconductor [17]
nanotubes. There was a need to consider the SL on the
surface of the tube. The SL with cylindrical symmetry may
be radial and longitudinal. The radial SL is a set of coaxial
cylinders. The longitudinal SL is similar to the system of
coaxial rings strung on the axis of the cylinder. Such SL
can exist on a tube filled with fullerenes or metal atoms
[18-20].

Landau damping of plasma waves in the degenerate
and nondegenerate electron gas on the surface of the
nanotubes in a longitudinal magnetic field in the absence of
the superlattice is considered in the paper [21]. The authors
of this paper calculated the longitudinal dielectric function
of the electron gas on the tube. Restricting ourselves
investigation taken into account only the intraband
transitions of electrons, they found the Aharonov-Bohm
oscillations of the dielectric constant.

In Refs. [22,23] the long-wave plasma oscillations
on the tube with a superlattice were considered. In these
articles, the transparency windows for plasma waves is
considered only for certain values of the wave vector and
the frequency of the waves. Here, within the established in
the article [22] model, we present the results of calculating
the position and shape of the region of Landau damping
plasma waves in the whole plane wavenumber-frequency.

The polarization operator of the electron gas
The energy of the electron with the effective mass m,,

on the surface of a cylindrical nanotube in a magnetic field
parallel to its axis, is calculated by Kulik taking into
account the quantization of radial motion of electrons in a
tube of small thickness [24]:
2 21,2
ek =& (l+7)" + o @

%

where 7l and 7k - the projection of the angular

momentum and momentum of electron on the tube axis,

2
& = h o —rotational quantum, a - the radius of
2m.a

the tube, 7 = % — the ratio of the magnetic flux @
0

through the cross section of the tube to the flux quantum
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Oy = Z”C% [24]. The equation (1) describes a set of
one-dimensional adjoining subbands whose boundaries
g =&l +77)2 coincide with the quantized energy

levels of the circular motion of the electrons on the tube in
the magnetic field. The electron density of states has a root
singularity at the boundary of the subzone. The simplest
way to take into account the superlattice on the tube is to
replace the energy of the longitudinal motion of the electron
in the formula (1) to the expression
& =A(l—coskd). 2)
This expression is borrowed from the theory of the
strong coupling of electrons with the lattice, and is often
used in the theory of superlattices and layered crystals
[15,25,26]. As a result of such a substitution the electron
spectrum on the tube becomes

en =0(1+7)? + A(l—coskd), 3)

where d — period of superlattices, 2A — band width in the

energy spectrum of the longitudinal motion of the electron.
This band corresponds to the values of the wave number K

in the first Brillouin zone —% <k < Ed . The spectrum

(3) describes the set of allowed energy region of electron
inside the intervals & <& < 2A, separated by gaps. By

analogy with traditional superlattice these bands are called
minibands. The electron density of states has a root
singularity at the miniband boundaries [27].

In the random phase approximation the damping
decrement of plasma waves with angular momentum 7m

and the wave number ¢ on the tube is equal to [22]

ImP, (9, @
7m(q):6ReP(q(q l))
ow ma

‘w:wm(q) : (4)

where P, (q, a)) — the polarization operator of electron
gas, @py (q) — plasmon spectrum. The polarization

operator is equals

f (8(|+m)(k+q))— f(ew)

)—8”( —ha)—iO’

Pn (0, @)= 5)

7L I E(14m)(k+q

where f (5) — Fermi function, L - the length of the tube.

The dispersion equation for the spectrum and damping
of plasma waves has the form
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1-v, (q)Pm (q,a))=0, (6)
where

vn (4) = 4re%aly (da)Kp (d0) ()

— cylindrical harmonic of electron Coulomb potential on
the tube, I, and K, — modified Bessel functions, € -
the electron charge.

If the electron gas is degenerate, the integration with
respect K in the formula (5) is limited to an interval

[—ki. K ], where
9 ~Larccos (Mj (8)
d A

— the maximum wave number of electrons in a partially
filled miniband with the number I, Mo —the Fermi energy.

The resulting integration over the K the |-miniband
contribution to the real part of the polarization operator is
defined by parameters
C, = —qd . 9)
2AsSIin——
2

Here
hQ, (1,m)=gom[2(1+n)£m], (10)
), - the frequency of direct transitions of electrons

| > 1+ m between the miniband of the spectrum (3).

If Ci <1, from the formula (5) we obtain
1
RePn(00) == —
A adAsm7

1
c+tgz(xI +qz)— 1- 1—cf)

1
{ - In 1
J1-¢! chZ(x, +
chi(—xl +qzd)—(1—«/l—cf

1 d
c.tg 2(—x, +qj -

—In

12

where X; = Kk;d . When the electrons are completely filled
the | -miniband, in the formula (11) X, = 7.

In case of Ci >1 we find

ReR, (0, @)=+ L

2ﬂ2adAsin%

qd
c,t — -1
+g(xl+2j

\/Cf -1

arctg +

=

(12)

c_tg(xI —qzdj+1

N

If we restrict our consideration only the intraband
transitions (m=0, Q, =0,

+arctg

q ), the formulas (11) and
2Asin EY

(12) is simplified.

Transition in the formulas (11) and (12) towards to
the nanotube without superlattice is performed according
to the rule

d—>0, A—)oo,dzA—>h%*. (13)

In this case, the spectrum (3) becomes (1) and formula
(11) takes the form

m

—* x
27:2h2qa

Re R, (q,a)):—

In‘a)—(Q+ + 0y +a)q)‘_
‘a)—(Q+ —qu +a)q)‘

(14)

‘a)—(Q_ +quy —a)q)‘
‘a)—(Q_ —qu —a)q)‘_

where
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2
) Z,f—\/ﬂo 4
m,
-maximal velocity of the electrons in the | -th subzone

without superlattice, @, = hqz
P » @q 2m,
In the absence of interband transitions (M = 0) from

the formula (5) we obtain the contribution of the |

-miniband into the imaginary part of the polarization

operator: ( ) 1
ImRBy(q, @)=~ ,
4radAlsin qzd‘\/l—c2
(15)
where A

q<2k,0<mw< 2—sin£sin(x| +£j
o2 2

If g Kk ,thefunction ImB isstill equal to (15),

however o_ < @ < @, , where
W, =2§sin£sin(ix| +ﬂj (16)
T h 2 2

Fig. 1 shows graphs of functions (15) in these cases.

|ImP, | |tmp, |

> @
0 R 0 o,

Fig. 1. The dependence of the imaginary part of
polarization operator (15) as the functions of the
frequency at g < 2K; (a), g > 2K (b).

The values of the jump in the points @, are
1

sin qdcos(irx, +qd)‘
2 2

dradA

Taking into account the interband transitions
(m=0) instead of formula (15) in the vicinity of the

frequencies €2, we get
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1

sin Of‘dl—cﬁ

as in the formulas (16) terms €2, appear.

ImRy, (9, 0) =- ,(17)

dradA

In the absence of spatial dispersion from the formula
(5) at any temperature we obtain

ImP, (a)):%zl:n, [6(0-0Q)-8(w-2,)], (18)

where N - the surface density of electrons in the |-th

miniband. In this case, the imaginary part of the polarization
operator has sharp jump at frequencies of direct electron
transitions between minibands.

Transparency windows
From formula (4) it is seen that for a obtaining of
transparency windows for plasma waves in a degenerate
electron gas on the surface of the nanotubes it is sufficient
to consider the regions on a plane — @, in which
ImP = 0. The same regions can be found from the laws

of conservation of angular momentum projection and
electron momentum projection on the axis of the tube, and
from the law of conservation of energy under the electron-
plasmon absorption. These conservation laws are:

Sk T ha)—g(|+m)(k+q) =0. (19)

From formula (5) we have seen that the left-hand side
of equation (19) is the argument of the delta function,
including into the imaginary part of the polarization
operator. In addition, when an quantum electron transfer

(I,k)—)(l +m,k+q) is occurs, involving the
absorption of a plasmon, the Pauli principle must be
performed: &) < g < E(l+m)(k+q) - Consequently, after

the substitution K = %k; in the equation (19), we obtain

the boundaries of collisionless damping of plasma waves
on the tube with a superlattice in a magnetic field:

w.(q)=Q. +2%sin%sin(ix| +%) (20)

These equations contains the value X; = kjd which

determines the position of the Fermi level 1 in the | -th

miniband. From the formula (8) it follows that under
X, =0 Fermi energy is located at the “bottom” of the

13
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miniband (g = &). With the growth of the X, Fermi
energy and the electron density increases. When X; = %
the level 14y is located in the center of the miniband (
MUy = & +A) and reaches her “ceiling” on the boundary
of the Brillouin zone (X =7, tig =& +2A). Thus,
when 0 < X < 772 the Fermi level is located in the lower
half of the miniband, while % <X <7 —atthe top.

When — 0, the difference @, —@_ in the

vicinity of each frequency €2, decreases, the Landau

damping region is narrowed in accordance with the
behavior of the polarization operator (18) in the absence of
spatial dispersion. This narrowing is occurs at the boundary
of the Brillouin zone where the second term on the right-
hand side of (20) is equal to
o, —Q, = Z;COS X - (21)
The shape and dimensions of the regions of Landau
damping in the vicinity of the frequencies €, are

determined by the position of the Fermi level in the

miniband. When £, increases from the “bottom” of the |
-th miniband to its “ceiling” the expression (21) in the

vicinity of the frequencies €, decreases from 2% to

e

Figure 2 schematically shows Landau damping region
between the curves (20) for various locations of the Fermi
energy in the miniband in the vicinity of the frequency €2

. Outside these regions until the curves

A . qd
Omax =82 +2—sin— (22
max + h 2 ( )
located transparency window for plasma waves. The curves

of (22) - solution of the equation i§3+|:l. When
+

Dmin

:Q+—Zésin£,
h 2

Q,

q q q
0 awd O pmwd " ¢ wd

Fig. 2. Areas of Landau damping between the curves
(20) at cosx; >0 (a), cosx;=0 (b) and

cosx <0 (c).

14

nQ, <2A, the graph of the curve @, (9) (22)
intersects the axis q at the point

q —Earcsin 2,
°d 2A

This point tends to the boundary of the Brillouin zone,
when 7Q, — 2A . If 7€), greater than the width of

the miniband 2A , there is no intersection, i.e. @_ (q) >0

located in the Brillouin zone.
The areas of Landau damping in the vicinity of the
frequency €Q_ are similar to those shown in Fig. 2. Note,

that when 77 >1/2  the boundaries of the miniband are
satisfy of inequalities €_1 <&y <&_» <... In this case,

the frequency of the direct transition of electrons =1 — —2

with m=-1 is equal Q+=go(3_277% . In the

vicinity of this frequency there exists a branch of the
plasmon spectrum with negative helicity.
In the absence of interband transitions (2, =0)

Landau damping regions are bounded by the curve (20) and
the axis (.

In formulas (20) perform the limit (13) towards to the
nanotube without superlattice. We take into account (8) and

sinx :i[(ﬂo -&)(g +2A—,uo)]%.

Since qd <1, from the formulas (20), taking into

account the terms of the order q2 we find

0y =Qy i%qd [(o-a)(a +2A—ﬂo)]% +$q2d2(€| +A- ).
Passing here to the limit (13), we obtain a parabola

appearing in the formula (14). The maximum speed of the

electrons v in the | -th miniband plays the role of the

Fermi velocity vg of electrons in three-dimensional and
two-dimensional electron gas.

The condition of resonant absorption of plasma
waves on the tube with a superlattice when m =0 has the
form

a):zésinﬂsin(k, +ﬂjd. (23)
h 2 2

In the extreme case qd <1, q < k|, kd <1, it
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takes the usual form in the theory of waves: % =y -

the phase velocity of the wave, propagating along the tube
is equal to the longitudinal velocity of the electrons.

Conclusions

Study of propagation of plasma waves along the tube
are very topical problem because it allows to determine
the waveguide characteristics of the tube. In addition,
it is possible to obtain additional information about the
dynamic characteristics of the conduction electrons on the
curved surface. The presence of an additional parameter
— the curvature of the structure — enriches the picture of
wave phenomena, increasing the number of ways to control
the properties of the system. In particular, the rotational
quantum contains the characteristic of circular motion of
electrons on the tube — transverse effective mass. It may
differ from the longitudinal mass. Superlattice adds new
features to the picture of wave propagation. It is associated
with additional parameters — the period and amplitude of
the modulating potential. Characteristics of the tube — form
and sizes of windows transparency of waves and their
spectrum and damping — are sensitive to these parameters.
This allows their to determine, by analyzing the properties
of waves.

The paper used a simple model spectrum of electrons,
simulating the superlattice on the tube. This allowed within
the model adopted in the random phase approximation to
obtain an exact expression for the polarization operator of
the electron gas. As a result, the shape and size of windows
transparency for plasma waves were determined in the
entire Brillouin zone. They were obtained by analysis of
the imaginary part of the polarization operator and with the
help of conservation laws. The results can be used in the
study of plasma waves in semiconductor superlattices on a
base of Al Ga, ,As/GaAs, InGaAs/GaAs,

InAs/GaAs, GeSi/Si and in carbon nanotubes in a

metal conduction mode.
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