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The main goal of the paper is to introduce and 
consider the quantum model of nonlinear autonomous 
oscillator (AO) in hard excitation regime. Our basic tool 
for solving this problem is the Lindblad master equation 
(LME) which describes the evolution of any (closed or 
open) Markov quantum system. Clearly, the  rst aspiration 
that arises when one starts to study the behavior of certain 
complex quantum open system (OS) is the desire to reduce 
it to some more simple standard model that permits the 
rigorous mathematical analysis. In the theory of open 
systems there are at least two similar models namely 1) 
AO in soft excitation and 2) AO in hard excitation regimes. 
The  rst case has been studied in [1] where to this end 
the semi-classical method of quantization of classical 
non-Hamiltonian systems was proposed. Therefore in the 
present paper we will focus our attention on the case of AO 
in hard excitation regime. Note that AO both in soft and hard 
excitation regimes are widely used in physics, biology and 

other sciences. For example, in physics, an oscillator in soft 
excitation regime used as the standard model of a generator 
of electromagnetic oscillations. As regards to AO in hard 
excitation this system  nds various applications aside from 
physics as well for example in biology where similar model 
can be applied for the description of activity of the giant 
axon of a squid in sea water [2]. Now let us describe brie  y 
the method of transition from known classical equations of 
motion to quantum dynamics by means of the LME. The 
basic idea in this way is the correspondence principle in the 
form proposed by P. Dirac in his prominent book [3].

It turns out that the broad interpretation of 
correspondence principle allows one under certain 
conditions to quantize (at least in the semi-classical 
approximation) the equations of motion not only for closed 
but also for open systems using the LME which realizes the 
quantum description of the evolution of quantum OS in the 
Markov approximation. This equation for the evolution of 
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the density matrix of quantum OS  has the following 

general form [4]:
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[ , ]

{[ , ] {[ , ]},
N

j j j j
j

d i H
dt

R R R R
             (1)

where H  is - an hermitian operator (Hamiltonian), which 
describes the internal dynamics of quantum OS, and a set 

of non-hermitian operators },{ jj RR - models its 

interaction with the environment.
The recipe of quantization proposed in [1] consists of 

three successive steps (its justi  cation and all details see in 
this paper). Firstly, the input dynamical equations should 
be presented in the special form allowing the quantization 
(FAQ). In the simplest case of a system with one degree of 
freedom with dynamical variables x  and p  or equivalently 

with complex coordinate 
2
ipxz  the desired equation 

in FAQ looks as follows:

*

* *
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N

j j
j j

j

dz i dH
dt dz

dR dR
R R

dz dz  
                

(2)

This representation, in the case where it is found 
determines automatically the classical functions

),( *zzH , ),( *zzR  and ),( *zzR  entered in Eq. (2).

The second step is to  nd the quantum analogs of 

classical functions H , R . R . To this end the simple rule 
can be proposed: one should replace in all classical 
variables the coordinates z  and *z  by the Bose operators 

a  and a . After this procedure the operators H , R   and 

R  thus obtained should be substituted into the LME. 

Now let us demonstrate in detail how the method of 
quantization operates in the case of AO in hard excitation 
regime. We will consider the simplest model of such 
oscillator that can be described by the following equation 
of motion for the complex coordinate z [5]:

2 4
1 2 | | | |z i z z z z cz z  ,         (3)

where 1 , 2  and c  - are the constants, describing the 

behavior of the oscillator. We are interested mainly in 
possible stationary regimes of the behavior of the oscillator 
as functions of these constants. One can easily verify that 

Eq. (3) can be represented in the FAQ. Indeed let us 

introduce the functions zzH * , zR 11 , 

2*2
2 2

zR , 3
3 3

zcR . After that r.h.s. of Eq. (3) 

may be written down as:
2 4

1 2

* * *
1

| | | |

{ }
N

j j
j j

j

i z z z z cz z
dR dRi dH R R

dz dz dz

.            (4)

In what follows we will assume that 1c  since this 
case is always may be achieved by choosing of appropriate 
time scale. According to the above mentioned recipe of 
quantization the LME for the AO in hard excitation regime 
takes the following form:

1

[ , ] {[ , ] {[ , ]},
N

j j j j
j

d
dt

i H R R R R  

    (5)where aR 11 , 
22

2 2
aR , 3

3 3
1aR .

From physical reasons we expect that steady regimes 
of classical system (3) in quantum case correspond to 
stationary states of its quantum analogue described by the 
LME (5). We’ll seek the stationary solutions of Eq. (5) in 

the form nn
n

nst
0

, where n  - are 

eigenvectors of the operator n  or in other words we assume 

that st  is a certain function of operator n . Using the 

standard rule of commutation: 1,aa after the simple 

algebra we obtain the following difference equation for the 

unknown coef  cients n :

1 1 2 2

3

(( 1) ) (( 1)
( 2)( 1) ) (( 3)( 2)( 1)
( 2)( 1) ) 0

n n n

n n

n

n n n n
n n n n n
n n n  

(6)

Let us introduce the generating function for these 

coef  cients according the de  nition: n

n
nuuG

0
)( . 

Substituting this expression into the Eq. (6) we obtain the 
following third order differential equation for the )(uG :

3 2 2
3 2

2 13 2

( )(1 ) ( 1) (1 ) 0d G d u G dGu u u
du du du   

(7)
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It is impossible to  nd out analytical solution of Eq. 
(7) in analytical form therefore we restrict ourselves to the 

case when coef  cients 1  and 2  are small but their ratio 

can be of arbitrary value namely 2

1

. In the lowest 

approximation (when both 1  and 2  tend to zero), )(uG  

is a certain polynomial of the second order: 
2

210)( uuuG , where populations n  

should be found as follows. Substituting the expression for 
)(uG  in Eq. (7) and taking into account that all 0i  

when 2i , and by virtue of normalization condition 

1210  we obtain the closed system of 

equations for the nonzero coef  cients n  that takes the 

form:

1 0

2 1

0 1 2

2
(6 1) / 2

1
                        

(8)

The solution of Eq. (8) looks as follows:

136
6

136
2

136
1

2

2

2

21

20

                            

(9)

Having in hands this solution we can analyze possible 
regimes of behavior for AO in hard excitation regime as the 
function of the parameter . First of all let us clarify two 

limiting cases a) 0  and b) .

Fig. 1. Population levels 0  (spotted curves), 1  (dashed curves) and 2  (solid curves) as the function of single 

physical constant . These four regimes correspond to the four ranges of : a) 
6
1

, then 210 ; b) 

3
1

6
1

 then 120 ; c) 
2
1

3
1

 then 102 ; d) 
2
1

 then 012 .

a                                                                                                      b

c                                                                                                      d
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In the case a) 10 , 1 , 2  tend to zero. This 

case corresponds to the vacuum state of AO in hard 
excitation regime (or the state of rest in the classical case).

In the case b) 010 , and 12 . It is the 
case of maximum possible excitation of the system in our 
approximation. It corresponds to the state above threshold 
in classical case.

Now one can specify the four distinct regimes of the 

AO under study depended on the parameter 2

1

. These 

regimes are represented in Fig. 1.
It is interesting to compare the results obtained in the 

present paper with similar ones relating to AO in soft 
excitation regime. Remind that generation function )(uG  

for stationary states of AO in soft excitation regime satis  es 
to the following second order differential equation (see Eq. 
(26) in Ref. [1]):

2

2(1 ) 0d G dGu vu vG
du du              

(10)

where v  is the only nonlinear parameter of this oscillator. 
Its solution that satis  es all physical conditions can be 
expressed as

)2,,1(
)1(,,1()(

vvF
uvvFuG ,                       (11)

where ),,( xbaF  is the standard con  uent hyper-

geometric function. Using the expansion of this function 

namely: x
bb

aax
b
axbaF

)1(!2
)1(1),,(  one 

can easily see that if parameter of nonlinearity v  tends to 

zero, corresponding generation function tends to:

3
2)(0

uuG .                          (12)

Thus the AO in soft excitation regime with small 
nonlinearity reduced to the two level system with population 

3
2

 in the lower and 
3
1

 in the upper level respectively. We 

see that compared with such primitive regime the case AO 
in hard excitation regime reveals considerably much more 
rich behavior.

Conclusions:
1. The quantum model of an AO in hard excitation regime 
is  rstly proposed in this paper.
2. Using the methods of the quantum theory of the OQS, the 
Lindblad equation for the density matrix of the oscillator 

was obtained, and it was found the four distinct regimes of 
the oscillator in the case when the physical parameters of 
the model are small.
3. It was shown that the quantum model proposed here has 
much more rich behavior then AO in soft excitation regime.
4. It is worth to note that the model AO in hard excitation 
regime considered in present paper, if it should be 
implemented as physical device, naturally realizes the 
curious case of three level quantum system in which one 
can achieves (by varying only single parameter) population 
inversion on any desired pair of levels.
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