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We propose the simple quantum model of nonlinear autonomous oscillator in hard excitation regime. We originate from classical
equations of motion for similar oscillator and quantize them using the Lindblad master equation for the density matrix of this system.
The solution for the populations of the stationary states of such oscillator may be explicitly found in the case when nonlinearity
parameters of the problem are small. It was shown that in this situation there are three distinct regimes of behavior of the model. We
compare properties of this model with corresponding ones of another closely connected open system, namely quantum oscillator in soft
excitation regime. We discuss a possible applications of the results obtained.
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B po6oTi Briepie 3anpornoHoBaHa KBAaHTOBA MOJIENb OCILIMIIATOPA 3 )KOPCTKHM PEKUMOM 30y/DKeHHS. MU BUXOIMMO 3 KIIACHYHUX
PIBHSIHB PyXy Ul TAKOTO OCLIMJISITOPA 1 3HAXOAMMO X KBAHTOBHI aHAJIOI, BUKOPUCTOBYIOYH BiAmoOBiAHe piBHsHHs JliHaOnama mis
€BOJIIOLT MaTpHLi I'yCTHHH KBaHTOBOI cucteMd. OTpHMaHO aHAIITHMYHUK PO3B’S30K B CTALliOHAPHOMY BHIIAJIKY, KOJIW HEINiHIHHI
napamMeTpH 3a/1a4i MaJii. 3HalICHO YOTHPH Pi3HUX PEKUMH MOBEIHKH aHOi cucTeMH. [I0piBHIOIOTHCS BIACTHBOCTI PO3NIISIHYTOT MO
3 BI/JMOBIIHUMH BIACTHBOCTSIMH QHAJIONYHOT CHCTEMH — KBAHTOBOTO OCLIJIATOPA 3 M SIKMM PEKUMOM 30ykeHHs. OGroBOprOEThCS
MOJKIIBE BUKOPHCTAHHS OTPUMaHUX PE3YJIbTaTiB.

Kurouosi ciioBa: sxopctke 30ymxeHHs, piBHAHEA JliHgOnana, MaTpHLs TyCTHHH, 1HBEPCis 3aCETICHOCTI.

B pabote BriepBbIe Ipe/uioxkeHa KBAHTOBAsI BEPCHsI MOZEGIH ISl aBTOHOMHOTO OCLIHJUISITOPA C )KECTKUM PEKUMOM BO30Y KIACHHMSI.
MBI UCXOOUM U3 KIACCUYECKUX YPaBHEHUIl IBWDKEHMS Ul TaKOrO OCLMIIATOPA M HAXOAUM HMX KBAaHTOBBIM aHAJOL, UCIIONb3YsS
COOTBETCTBYIOIee ypaBHeHHe JIMHAOMaga IJIst SBOJIOIMM MaTpPUILl TUIOTHOCTH KBAaHTOBOH cHCTeMEBL [lomydeHo aHaaMTHUIEeCKOe
pelieHne B CTAIOHAPHOM CITydae, KOT/Jja HelIMHEHHbIe TapaMeTphl 3a1adn Maiisl. HaiiieHs! deThIpe pa3iuyHbIX peKHMa TTOBEACHHUS
JaHHOU cucTeMbl. CpaBHHUBAIOTCS CBOHCTBAa PACCMOTPEHHOW MOJEIH C COOTBETCTBYIOIIMMH CBOWCTBAMH aHAJIOTUYHOW CHCTEMBI —

KBaHTOBOT'O OCLIMJLIATOPA ¢ MATKUM BO30yxaeHneM. O0CyKaeTcs BO3SMOKHOE TPUMEHEHHUE TOJTyYEHHBIX PE3yJIbTaTOoB.
KuroueBblie ciioBa: sxectkoe Bo30ysxkieHue, ypasHeHue JInuaonana, MaTpyia IOTHOCTH, HHBEPCHsI HACEIIEHHOCTEH.

The main goal of the paper is to introduce and
consider the quantum model of nonlinear autonomous
oscillator (AO) in hard excitation regime. Our basic tool
for solving this problem is the Lindblad master equation
(LME) which describes the evolution of any (closed or
open) Markov quantum system. Clearly, the first aspiration
that arises when one starts to study the behavior of certain
complex quantum open system (OS) is the desire to reduce
it to some more simple standard model that permits the
rigorous mathematical analysis. In the theory of open
systems there are at least two similar models namely 1)
AO in soft excitation and 2) AO in hard excitation regimes.
The first case has been studied in [1] where to this end
the semi-classical method of quantization of classical
non-Hamiltonian systems was proposed. Therefore in the
present paper we will focus our attention on the case of AO
in hard excitation regime. Note that AO both in soft and hard
excitation regimes are widely used in physics, biology and
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other sciences. For example, in physics, an oscillator in soft
excitation regime used as the standard model of a generator
of electromagnetic oscillations. As regards to AO in hard
excitation this system finds various applications aside from
physics as well for example in biology where similar model
can be applied for the description of activity of the giant
axon of a squid in sea water [2]. Now let us describe briefly
the method of transition from known classical equations of
motion to quantum dynamics by means of the LME. The
basic idea in this way is the correspondence principle in the
form proposed by P. Dirac in his prominent book [3].

It turns out that the broad interpretation of
correspondence principle allows one under certain
conditions to quantize (at least in the semi-classical
approximation) the equations of motion not only for closed
but also for open systems using the LME which realizes the
quantum description of the evolution of quantum OS in the
Markov approximation. This equation for the evolution of
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the density matrix of quantum OS p has the following

general form [4]:

' i &)

where H is - an hermitian operator (Hamiltonian), which
describes the internal dynamics of quantum OS, and a set

of non-hermitian operators {Iij,li;}- models its

interaction with the environment.

The recipe of quantization proposed in [1] consists of
three successive steps (its justification and all details see in
this paper). Firstly, the input dynamical equations should
be presented in the special form allowing the quantization
(FAQ). In the simplest case of a system with one degree of
freedom with dynamical variables X and p orequivalently

+p
V2

X
with complex coordinate Z = the desired equation

in FAQ looks as follows:

dz | dH
— +
dt h dz" 2
N _ dR. dR.
R.—’—R. 1
+JZ=:‘{ Pdzm dz*}

This representation, in the case where it is found
determines  automatically the classical functions

H(z,2"), R(z,z") and R(z,2") entered in Eq. (2).
The second step is to find the quantum analogs of
classical functions H , R. R".Tothisend the simple rule
can be proposed: one should rgplace in all classical
variables the coordinates Z and Z by the Bose operators
a and A" . After this procedure the operators H , R and
R* thus obtained should be substituted into the LME.

Now let us demonstrate in detail how the method of
quantization operates in the case of AO in hard excitation
regime. We will consider the simplest model of such
oscillator that can be described by the following equation
of motion for the complex coordinate Z [5]:

l=—iwz-s1+e,2|2f —cz|z', ()

where &, &, and C - are the constants, describing the

behavior of the oscillator. We are interested mainly in
possible stationary regimes of the behavior of the oscillator
as functions of these constants. One can easily verify that
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Eqg. (3) can be represented in the FAQ. Indeed let us
introduce  the functionsH =wz z, R, =./&12,

1[ , Ry = \/7 . After that r.h.s. of Eq. (3)

may be written down as:
—wz-gz+e,2|2f —cz|z|'=
i dH x R dﬁ ' @

_ ,Z{ Ry

In what follows we will assume that C =1 since this
case is always may be achieved by choosing of appropriate
time scale. According to the above mentioned recipe of
quantization the LME for the AO in hard excitation regime
takes the following form:

dp _

dt

_%m, PI+ AR A RITHIR, £ RiTH

where R \/_a R, \/g (5)R \/7A3

From physical reasons we expect that steady regimes
of classical system (3) in quantum case correspond to
stationary states of its quantum analogue described by the
LME (5). We’ll seek the stationary solutions of Eq. (5) in

=i|n>pn<n|, where |n> - are
n=0

eigenvectors of the operator N or in other words we assume

the form p,

that p, is a certain function of operator N. Using the
standard rule of commutation: [ﬁ, a’ ] = 1 after the simple
algebra we obtain the following difference equation for the

unknown coefficients p,, :

&((n+Y)p,.,—np)+&,(n=Dnp, , -
—(n+2)(n-1)p,)+((n+3)(n+2)(n+1)p,.;— (6)
~(1-2)(n-Dnp,) =0

Let us introduce the generating function for these

coefficients according the definition: G(u) = anu”
n=0

Substituting this expression into the Eq. (6) we obtain the
following third order differential equation for the G(u):

d (UZG)

(u? 1) vea-u) -0 )
du
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It is impossible to find out analytical solution of Eq.
(7) in analytical form therefore we restrict ourselves to the

case when coefficients &, and &, are small but their ratio

&
can be of arbitrary value namely—2 =y . In the lowest
&
approximation (when both & and &, tend to zero), G(u)
is a certain polynomial of the second order:
G(U) = p, + pU+ p,u”, where populations p,

should be found as follows. Substituting the expression for
G(u) in Eq. (7) and taking into account that all p;, =0

wheni > 2, and by virtue of normalization condition
Po+p.+p, =1 we obtain the closed system of

equations for the nonzero coefficients o, that takes the

1.0 e

form:
PL=2p,
p,=6y+h)p 12
Potptp,=1

The solution of Eq. (8) looks as follows:

(8)

1
p0_67/2+37+1
__ 2%

6y +3y+1
6y° +
P2 = 2]/ z
6y +3y+1

Pr ©)

Having in hands this solution we can analyze possible
regimes of behavior for AO in hard excitation regime as the
function of the parameter y . First of all let us clarify two

limiting casesa) ¥ — 0 and b) y — 0.
1.0

" u.n,__".
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Fig. 1. Population levels o, (spotted curves), o, (dashed curves) and p, (solid curves) as the function of single

1
physical constant y . These four regimes correspond to the four ranges of y:a) y < E then p, > p, > p,: 0)

%<7<%then p0>p2>p1;c)%<7<%then p2>p0>p1;d)%<;/then Po > P> Po
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In the case a) p, =1, p;, p, tend to zero. This

case corresponds to the vacuum state of AO in hard
excitation regime (or the state of rest in the classical case).

In the case b) p, = p, =0, and p, =1. It is the
case of maximum possible excitation of the system in our
approximation. It corresponds to the state above threshold
in classical case.

Now one can specify the four distinct regimes of the

AO under study depended on the parameter y = % . These
gl
regimes are represented in Fig. 1.
It is interesting to compare the results obtained in the
present paper with similar ones relating to AO in soft
excitation regime. Remind that generation function G(u)

for stationary states of AO in soft excitation regime satisfies
to the following second order differential equation (see Eq.
(26) in Ref. [1]):

d’G
du®
where V is the only nonlinear parameter of this oscillator.

Its solution that satisfies all physical conditions can be
expressed as

dG

@+u) —vwu—-vG =0
du

(10)

F(@v,v(l+u)

G(u) = (11)
W F(@,v,2v)
where F(a,b,Xx) is the standard confluent hyper-
geometric function. Using the expansion of this function
a a(a+1
namely: F(a,b,x) =1+—Xx +¥X+... one
b™ 2b(b+1)

can easily see that if parameter of nonlinearity V tends to
zero, corresponding generation function tends to:
2+uU
Gy(u) ="~
3
Thus the AO in soft excitation regime with small
nonlinearity reduced to the two level system with population

(12)

2 1
§ in the lower and g in the upper level respectively. We

see that compared with such primitive regime the case AO
in hard excitation regime reveals considerably much more
rich behavior.

Conclusions:
1. The quantum model of an AO in hard excitation regime
is firstly proposed in this paper.
2. Using the methods of the quantum theory of the OQS, the
Lindblad equation for the density matrix of the oscillator
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was obtained, and it was found the four distinct regimes of
the oscillator in the case when the physical parameters of
the model are small.

3. It was shown that the quantum model proposed here has
much more rich behavior then AO in soft excitation regime.
4. It is worth to note that the model AO in hard excitation
regime considered in present paper, if it should be
implemented as physical device, naturally realizes the
curious case of three level quantum system in which one
can achieves (by varying only single parameter) population
inversion on any desired pair of levels.
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