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Introduction
It was recently found [1-3] that intrinsic Josephson 

junctions in mesas of high-temperature superconductors 
(HTSC) revealed coherent emission at voltages 
corresponding to frequencies of geometrical resonances 
of microwaves. Self-resonant steps in IV-characteristics 
were observed at these resonances [1]. In experiments [1-
3] mesas were biased only by the direct current. External 
magnetic  eld was not applied. The theory of resonant 
steps in IV-curves of junctions placed in external magnetic 
 eld (so-called Fiske steps) was developed in Refs. 4, 

5. However, the appearance of self-resonant steps in the 
absence of external applied magnetic  eld (so-called zero-
 eld steps) was also observed experimentally [6,7]. The 

proposed mechanisms of the vortex motion inside the 
junction [8] allowed explaining the appearance of zero-
 eld steps at even resonant frequencies. The quantitative 

explanation of the appearance of zero-  eld steps referring 

to the general theory [4, 5] was made in Ref. 9.    
In theoretical investigations the resistive shunt over 

the whole stack of intrinsic Josephson layers was used 
to model their properties [10]. Earlier we showed 
theoretically that coherent radiation appeared at self-
resonant steps of the IV-curve of the chain of Josephson 
junctions placed in the transmission line [11-12]. The 
existence of self-resonant steps was proved experimentally 
[13, 14]. In the present paper we show that in the 
long Josephson junction zero-  eld steps can appear if 
plausible boundary conditions are ful  lled. The described 
below conditions can be valid in high-temperature 
superconductors. Superconducting properties of these 
systems are strongly dependent on the content of the 
oxygen in superconducting layers. Diffusion of the oxygen 
out of superconducting layers leads to the change of the 
critical temperature at ends [1]. Moreover, one can expect 
that some small parts of superconducting layers at ends 
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of the superconductor can be in the normal state. One 
can model boundary conditions of an intrinsic Josephson 
junction in such a superconductor as shunts consisting of 
inductances, resistances and capacitances (so-called RLC-
shunts). We used the 'lumped' model of a long Josephson 
junction [15] in which the junction was represented as a set 
of radio-technical elements. The RLC-shunt is a model of 
the state when the insulating barrier is placed between non-
superconducting parts of layers at the ends of the tunnel 
junction. We calculated IV-characteristics of the junction 
with the mentioned boundary conditions and showed that 
zero-  eld steps appeared at voltages corresponding to even 
modes of geometrical resonances in the junction. We also 
discussed the dependence of the distance between zero-
 eld steps on the reciprocal dimension of the system.

The model.
The geometry of the long Josephson junction is 

presented in Fig. 1a, and the high-frequency scheme of the 
junction is shown in Fig. 1b. The junction with the critical 
current Ictot is divided into n ‘elementary junctions’ with 
critical currents Ictot/n. ‘Elementary junctions’ in Fig. 1b are 
presented in the range of the resistively and capacitively 
shunted model [15] with the resistance Rk, capacitance Ck 
and the source of the Josephson current Icksin k for the k-th 
junction (k = 1…n). In the following consideration we 
assume that for all k the condition Ck = C, Rk = R and Ick=Ic 
is valid. ‘Elementary junctions’ are divided by the distance  

c CL , where c  is the velocity of light in the 

junction and L is the inductance of the ‘elementary cell’ 
between junctions. Then the current conservation conditions 
for junctions together with equations for circulating 
currents in loops between junctions are as follows:    

2
0 0

2

1

sin
2 2

k k
c k

R R
b k k

C d d I
dt R dt

I I I  

,     (1a)

0
12

R
k k kI

L  
,               (1b)

where  k = 2…n-1, k is the phase difference across the k-th 
junction and 0 is the quantum of magnetic  ux. 

It can be shown that equations (1a) and (1b) represent 
the written in  nite differences main equation of the 
electrodynamics of the long Josephson junction [15]. Let 

us introduce parameters dCc S
0

2 1 , 
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 and 1/ RC  with 

21 LLld  is the sum of London depths of 

penetration of electromagnetic  eld into the  rst and the 
second superconductors L1 and L2, correspondingly, l is 
the thickness of the insulator barrier, 0 is magnetic 
permeability of vacuum, Jc is the density of the critical 

current, SC is the capacitance per unit area and J is the 
Josephson depth of penetration of magnetic  eld in the 
junction. With the use of these parameters for 0 one 
obtains the equation
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Note that the well-known sine-Gordon equation [16] 
is obtained from Eq. (2) if terms containing  and Ib/Ic are 
omitted. 

There are not analytical solutions of Eq. (2). Therefore, 
we solved the corresponding system of Eqs. (1a) and (1b) 
numerically.

To form boundary conditions, additional contours 
with capacitances Cek, inductances Rek and inductances Lek 

were added to both ends of the line. The Kirchhoff’s circuit 
laws for these contours are following:  
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,  k = 1, n,          (3) 

where the upper signs in the right side relate to k =1 (the 

a

b
Fig. 1. (a)- the long Josephson junction. Insulator 
is shaded. Black solid lines at ends of the junction 
symbolize the ReLeCe-shunting discussed in the paper. 
(b)- the electrical scheme of the junction. The shown 
circuit consists of 4 cells and 5 junction. The additional 
boundary circuit contours are also shown. In calculations 
the number of cells was 200-500.
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left end of the junction), the lower signs relate to k = n (the 

right side of the junction) and qk is the charge  owing 

through the inductance Lek. In the beginning of calculations 
we set the length D and the width W of the long junction, 
the density of the critical current Jc, the critical voltage Vc, 
the inductance of the junction per unit of length Lul and the 
velocity of light in the junction c . Note that our model is 
quasi-one-dimensional, so the introduction of the width W 
is made merely to calculate Jc. Then the junction was 

divided into n cells with the length nD / . Parameters 

of ‘elementary junctions’ and cells were equal to Ic = Jc W , 

R =Vc/Ic, L=Lul·  and LcC 22 / . The last relation 
follows from the constant velocity of light in the long 
junction that should provide the transmission line (see Fig. 
1b). Note that the value of the McCumber parameter 

C=(2 IcR
2

nC)/ 0 does not depend on . Then Eqs. (1a) and 
(1b) with boundary conditions (3) were solved by the 
method of Runge-Kutta for different values of the bias 
current. IV-characteristics were obtained in calculations. 
The voltage over the junction was calculated as 
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, where the sign ...  means full 

averaging over the large interval of time TJ >> (1/ J) with J 
is the characteristic frequency of Josephson generation.

Results and discussion.
Values of parameters for calculations were chosen as 

follows. The parameter D was changed from 50 10-6 m to 
650 10-6m. Other parameters were W=300 10-6 m, 
Jctot= 105 A/m2, Lul=1.25 10-8 H/m, Vc = 4.74 mV, 

c 6.708 107 m/sec [1], C=40.34, n=200÷500. Calculated 
parameters J and d were 2.97 10-5 m and 2.98 10-6 m, 
correspondingly. The wavelength of the  rst harmonic of 
Josephson generation cVc /0  at the characteristic 
voltage Vc was equal to  = 29.3 10-6 m. 

Now we discuss the choice of parameters. We chose 
the described values because they are close to corresponding 
parameters of intrinsic Josephson junctions in high-
temperature superconductors [17]. At the same time, it is 
known that the model of the resistively and capacitively 
shunted Josephson junction is not quite adequately describe 
intrinsic junctions [17], so some parameters like J and C 
are different from those in HTSC. We note also that the 
thickness of the superconducting layer in HTSC is only 
two or three tenths of nanometer, whereas in the model 
we use the value d of order of micrometers. Therefore, we 
found IV-characteristics of the Josephson junction which 
has some characteristic parameters of intrinsic Josephson 
junctions. For the adequate description of intrinsic junctions 
the present model should be changed to take into account 

the narrow layers of the superconductor and the periodic 
layered structure of HTSC.  

For boundary conditions we chose values of Rei= 
100 Ohm, Lei = 0.2 pH, Cei = 3pF for both boundaries 
with i=1 and i=n which correspond to approximately 2-5 
micrometers of the non-superconducting part at edges. 
The resonant frequency of the LeiCei-resonance contour is 
much larger than the characteristic frequency of Josephson 
generation. We checked that the choice of values of the 
parameter n did not in  uence results of calculations.

The example of the IV-characteristic of the junction 
with the length 1.80 10-4 m is shown in Fig. 2. It is seen that 
there are zero-  eld steps in the IV-characteristic. In Fig. 2 
these steps are numbered from 1 to 4. Note that Eqs. (3) 
describe additional ac current contours through which some 
electromagnetic excitations enter the long junction. The 
frequency of these excitations coincides with the frequency 
of Josephson generation, and they propagate along the long 
junction and re  ect from its ends. Resonance voltages in 
this model are described by such an expression [8,9]:  

D
mcVm

0 ,                                    (4)

where m=1,2,3… is an integer. These voltages correspond 

to even Fiske steps )2/()( 0 DpcVp , with p is an 

integer, so p = 2m. We noted positions of Vm by short arrows 
in Fig. 2. It is seen that positions of Vm do not coincide with 
steps obtained from solutions of Eqs. (1a)-(1b). More 

adequate equidistant steps were found from data of Fig. 2 
empirically (they are shown by long arrows). We explain 
this deviation by the in  uence of higher harmonics of 
Josephson generation in the hysteretic region.

Fig. 2.  The IV-characteristic (circles) of the junction 
with the length 180 micrometers. The jump of voltages 
at Ib = Ic is marked by dashed line. Steps are numbered 
from  m =1 to m = 4.  Short arrows show positions of 
voltages DmcVm /0 , long arrows show 
equidistant steps found empirically.
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To show that the distance between steps in IV-
characteristics is proportional to the reciprocal length of the 
junction (see Eq. (4)), we calculated averaged values of 

V=Vm-Vm-1  for the junction with the given D  and plotted 
the difference of frequencies f = V/ 0 on the value of 
1/D (Fig. 3).  For the comparison the dependence  

D
cVf

0

obtained from Eq. (4) is also plotted in 

the same  gure. It is seen from Fig. 3 that data obtained 
from the numerical model is in accordance with the 
theoretical plot. 

We found that the investigated effect of zero-  eld 
steps is observed in the very wide range of parameters 
Rek, Lek and Cek for boundary conditions Eq. (3) providing 
and Rek  . Mentioned parameters can change by many 
orders of magnitude, but the change of both positions of 
steps and heights of steps is small. This result proves the 
supposition that the additional boundary contours plays the 
role of generators of excitations and makes more probable 
our supposition that described boundary conditions are 
responsible for the appearance of zero-  eld steps in HTSC. 
We checked that zero-  eld steps appeared also if ends of 
the long junction were superconducting but with slightly 
different critical currents. Thus, self-resonant steps can 
appear if electromagnetic excitations enter the junction 
from ends. 

Conclusions
In the present paper we calculated IV-characteristics 

of the long Josephson junction with boundary conditions 
which correspond to shunts which consist of resistances, 
inductances and capacitances. These boundary conditions 
model the single intrinsic Josephson junction with the 
insuf  cient content of the oxygen at edges. IV-curves 

Fig. 3. The dependence of f on the reciprocal width of 
the junctions 1/D (circles). Solid line is the dependence  

Dcf / .

reveal zero-  eld resonant steps. Frequencies at which these 
steps are observed correspond to the even geometrical 
resonances in the structure (even Fiske steps). We analyzed 
the dependence of the difference between frequencies 
of steps on the reciprocal length of the junction. This 
dependence is in agreement with predictions of the theory.  
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